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ABSTRACT

Context. Tracing wave activity from the photosphere to the corona has important implications for coronal heating and prediction of
the solar wind. Despite extensive theory and simulations, the detection of waves in realistic MHD simulations still presents a large
challenge due to wave interaction, mode conversion, and damping mechanisms.
Aims. We conducted this study to detect localised wave activity within a realistic MHD simulation of the solar atmosphere by the
Bifrost code.
Methods. We present a new method of detecting the most significant contributions of wave activity within localised areas of the
domain, aided by Discrete Fourier Transforms and frequency filtering. We correlate oscillations in the vertical & horizontal magnetic
field, velocities parallel & perpendicular to the magnetic field, and pressure to infer the nature of the dominant wave modes.
Results. Our method captures the most powerful frequencies and wavenumbers, as well as providing a new diagnostic for damping
processes. We infer the presence of magnetoacoustic waves in the boundaries of prominent chromospheric/coronal swirling features.
We find these waves are likely damped by viscous heating in the swirl boundaries, contributing to heating in the upper atmosphere.
Conclusions. Using the most significant frequencies decomposition, we highlight that energy can be transported from the lower
atmosphere to the upper atmosphere through waves and fluctuations along the swirl boundaries. Although further analysis is needed
to confirm these findings, our new method provides a path forward to investigate wave activity in the solar atmosphere.

Key words. Waves, Magnetohydrodynamics (MHD), Sun: atmosphere, Methods: data analysis

1. Introduction

It has long been debated if the propagation, damping and
dissipation of magnetohydrodynamic (MHD) waves is a sig-
nificant contributor to the coronal heating problem, and if so,
where these waves originate from. MHD theory (Ferraro &
Plumpton 1958; Bel & Mein 1971; Nakagawa et al. 1973;
Zhugzhda 1983; Zhugzhda & Dzhalilov 1984; Goedbloed &
Poedts 2004; Goossens et al. 2011) has given us an extensive
toolkit to study magnetoacoustic-gravity wave modes, including
important insight into how linear and non-linear modes prop-
agate, change, and interact with each other in a non-uniform
medium. Specifically, it is important to note the evanescence
(damping) of different waves due to criteria known as cut-off
frequencies. For example, for acoustic modes this limit depends
on the speed of sound, and greatly reduces the purely acoustic
wave activity in the upper atmosphere. Furthermore, around
the β = 1 transition, both magnetic and gas pressure can act
as the dominant restoring force for magnetoacoustic waves.
The distinction of modes in this region is less clear, and it is
possible that the nature of the wave may change around this
transition, and so mode conversion is usually assumed in this
region. In the upper atmosphere, the magnetic field inclination
also plays an important role in the trapping and reflection of
waves (Nakagawa et al. 1973; Newington & Cally 2010). As
the magnetic field becomes more vertical with height, strict
constraints develop on the propagation of magnetoacoustic
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waves into the corona, and most wave energy is instead reflected
back into the chromosphere.

Whether or not magnetosonic waves have enough energy to
heat the corona, it is still unclear how or if they can transport it
from the photosphere upwards to the corona. Idealised numeri-
cal simulations (Bogdan et al. 2003; Chatterjee 2020; Kumar &
Kumar 2020; Riedl et al. 2021b,a; Cally 2022; Yelles Chaouche
et al. 2023) have strengthened our understanding of these modes
of oscillation, by tracking and studying driven waves through
inhomogeneous media. Previous studies have shown how energy
may be transferred across boundaries via mode conversion, and
estimates of wave flux energy have been used to support or
disband the significance of specific wave modes in heating the
corona (Carlsson & Bogdan 2006; Fossum & Carlsson 2005;
Newington & Cally 2010; Cally 2017; Tarr et al. 2017; Liu
et al. 2023; McMurdo et al. 2023). From this, it is concluded
that mainly acoustic modes dominate in the photosphere,
whilst magnetoacoustic and Alfvén modes are present in the
upper chromosphere and corona. These idealised simulations,
however, are still far from the physical reality, lacking crucial
physics and self-consistency that may influence wave behaviour.
Ultimately, the next steps are to confirm such mode conversions
and damping in realistic simulations, and eventually, observa-
tions. Furthermore, the estimations of wave energy deposition
have important implications for the boundary conditions of solar
wind predictions (Holst et al. 2014; Sishtla et al. 2022; Perri
et al. 2022). It is possible to estimate the Alfvén wave energy
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transferred into the solar wind in MHD simulations using the
Elssässer variables, and more recently, modified Q-variables
that also encompass fast and slow magnetoacoustic wave energy
(Van Doorsselaere et al. 2024). Alternatively, these wave fluxes
can be observationally constrained (Morton et al. 2012; Sharma
& Morton 2023), however an accurate determination is a subject
of ongoing work.

In realistic simulations, wave modes interact with each other,
form shocks, experience turbulence, and change nature, making
it challenging to follow wave activity through the computational
domain. The altitude of the β = 1 transition is also inhomo-
geneous, and contains both chromospheric and coronal plasma,
such that waves travelling in any direction may cross this tran-
sition more than once. Furthermore, when the wave modes are
self-driven by convective motions, it is difficult to differentiate
individual waves from other time-dependent dynamics. Yadav
et al. (2022) and Enerhaug et al. (2024) suggest possible meth-
ods to detect wave activity across field lines and flux surfaces re-
spectively, by capturing characteristics specific to each magne-
toacoustic wave mode. However, these typically do not extract
the actual oscillations of wave activity. Raboonik et al. (2024)
proposes a method of decomposition using the eigenenergies of
magnetoacoustic waves. This is able to capture both non-linear
effects and phase-mixing in 3D realistic simulations, but still has
limitations, such as the assumption of adiabaticity (no dissipa-
tion mechanisms), and the exclusion of gravity in the deriva-
tion of the method. Here, we elaborate on the work of Finley
et al. (2022), using a combination of Discrete Fourier Transforms
(DFT) and component decomposition to infer wave activity in a
physically realistic 3D simulation.

2. Numerical simulation

2.1. The Bifrost code

The simulation we have analysed was produced using the 3D
radiative magneto-hydrodynamic (rMHD) code, Bifrost, de-
scribed in detail in Gudiksen et al. (2011). Bifrost incorporates
a shallow, but self-consistent, convection zone which drives the
motions above, up to the mid-corona. Within each atmospheric
level, additional physics modules aim to capture the physical
processes and create a realistic simulation. Thermal conductiv-
ity is applied in the upper atmosphere, and follows Spitzer con-
ductivity, calculated through an explicit hyperbolic approxima-
tion (Spitzer & Seeger 1963; Rempel 2017; Cherry et al. 2024).
In optically thin regions (upper chromosphere/corona), radia-
tive transfer is assumed to only depend on density and tempera-
ture, with a transfer function calculated with ionization, recom-
bination and collisional excitation rates from precomputed data
given by Shull & van Steenberg (1982), Arnaud & Rothenflug
(1985) and Judge & Meisner (1994). Full radiative transfer in
four opacity bins (Hayek et al. 2010) is then used for optically
thick regions, predominantly in the photosphere and lower chro-
mosphere. These calculations assume a static medium, and local
thermal equilibrium (LTE), except for hydrogen ionization in the
chromosphere, which is treated as non-LTE. The radiative trans-
fer equation is solved iteratively in order to include important
scattering effects. The main MHD equations are solved using a
3rd-order Hyman predictor-corrector scheme, from a staggered
Cartesian grid with 5th and 6th order spatial operatives. The sim-
ulation was run with variable time-stepping, and localised hyper-
diffusive terms to increase stability.
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Fig. 1. Vertical magnetic configuration where τ = 1, at time = 136.8
minutes

2.2. Set-up

We analyse a quiet-sun simulation which consists of a 12 ×
12 Mm2 horizontal extent, with resolution of dx = dy =
11.7 km. The computational domains extends from the convec-
tion zone approximately 2.5Mm below the photosphere, to the
mid-corona, ∼ 8 Mm above with a varying vertical resolution
of dz = 6–35 km. In total, the domain consists of 10243 grid
points; a higher resolution than most published simulations from
Bifrost. There are periodic boundaries in x and y, with open
upper and lower boundaries. The upper boundary uses character-
istic boundary conditions (see Gudiksen et al. 2011) which aim
to transfer material through the boundary with minimal reflec-
tion. Even so, we avoid analysis within 2 Mm of this boundary
in order to remove boundary effects. On the lower boundary, the
entropy is maintained such that the solar effective temperature
reaches 5773 K, although in reality it varies between 5717 K
and 5761 K.
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Fig. 2. Average vertical temperature profile (black) over the whole do-
main. The dashed lines display the horizontal planes that were used and
analysed in this study, at z = 0, 2, 4, and 6 Mm. The dotted line repre-
sents the plane used in Figure 1. The grey lines show the evolution of
the temperature profile across the analysed timespan.

This study analyses the simulation starting at 1.5 hours ( re-
ferred to as t = 0 seconds) of solar time, with a snapshots avail-
able at a cadence of 10 seconds, continuing until 2.1 hours (t =
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Fig. 3. Localised plasma-β at height z = 2, 4, and 6 Mm at t = 1000 seconds. Regions around β = 1, represented by the lightest shades, are most
susceptible to contain phase mixing and damping processes. Two prominent swirling features are highlighted by the boxed regions.

1890 seconds) of solar time. This pertains to 189 snapshots of
data, spanning 36 minutes.

We have chosen three horizontal slices in which to proceed
with analysis in this paper, shown in Figure 2. These correspond
roughly to the upper chromosphere (2 Mm), end of transition
region into corona (4 Mm), and the low-corona (6 Mm).

2.3. Overview

The simulation evolves a highly non-idealised structure, visible
in the vertical magnetic field structure in Figure 1. The self-
consistent convection zone continually drives the motions fur-
ther up in the simulation box such that the magnetic field is con-
stantly evolving. The average structure of the atmosphere con-
sists of photospheric granulation at approximately 0 Mm, tem-
perature minimum at 500 km, and the plasma β,

β =
P

B2/2µ0
∝

c2
s

v2A
(1)

passes unity (β = 1) in the upper photosphere/lower chromo-
sphere on average (see Figure 3 for β variation across the specific
slices). In time and space, the β = 1 level varies considerably be-
tween the photosphere, z = 0 Mm, to the corona, z > 6 Mm,
and forms a highly corrugated surface. Thus, it is not so easy to
reach general conclusions about the nature of a wave travelling
along or through a horizontal plane. This is especially true for
two prominent magnetic features in the domain (see Figure 3),
which exhibit torsional "swirling" velocities and twisted mag-
netic fields, expanding from the upper photosphere into the low
corona. The motions of such features are described in depth in
Tziotziou et al. (2023). These structures, henceforth referred to
as swirls, elevate the β = 1 layer up to 6 Mm, on the boundaries
of the swirl. These thin boundary areas could be important as a
possible route for waves to be transferred to the low-β plasma
from the lower atmosphere. It is also important to note that adia-
baticity does not hold everywhere. This is seen by the differences
in p and ρ throughout the upper atmosphere, showing that the
ideal gas assumption generally doesn’t hold. When subject to
non-adiabatic conditions, both linear and non-linear waves can
lose energy through processes such as damping (Carbonell, M.
et al. 2004).

3. Methodology

Inspired by the analysis in Finley et al. (2022), we use the DFT
on the temporal and spatial evolution of a quantity, g(x, y, t), in
a horizontal plane. The quantity is mapped to Fourier space, in
terms of the horizontal wavenumbers, ν̃i = ki/2π, and the fre-
quencies, f = ω/2π,

F (ν̃x, ν̃y, f ) =
Nx∑

nx=1

 Ny∑
ny=1

 Nt∑
nt=1

g(nx, ny, nt)e
−i

2π f nt
Nt

 e−i
2πν̃xnx

Nx

 e
−i

2πν̃yny
Ny , (2)

where nx,ny,nt, represent the indices of the spatial and temporal
directions, and Nx,Ny,Nt denote the total number of points in
each direction. The range of the spatial and temporal frequencies
are given by the spatial and temporal step-size, respectively, for
the maximum frequency, and the size of the spatial/temporal
domain for the minimum frequency. Therefore, the minimum
frequency sampled is 1/L = 0.083 Mm−1 for the spatial direc-
tions, and 1/T = 0.52 mHz for the temporal direction. These are
also the respective sampling resolutions.

For a given set of filtered horizontal wavenumbers or tem-
poral frequencies (frequency bin), the localised contributions to
the quantity, g, in the original spatial-temporal domain may be
reconstructed using an inverse DFT. We propose that localised
wave activity may be detected in regions of the simulation do-
main by mapping the frequencies that reconstruct the most ac-
curate strength at each point. Per index, the significance of a fre-
quency bin, b, is determined through the absolute difference of
the reconstructed signal, S b, to the original signal,

Diffb[nx, ny, nt] = | S b[nx, ny, nt] − g[nx, ny, nt] |. (3)

Therefore, the most significant signal, has the smallest absolute
error. We note that if the signal is not centred on zero, it is
important to combine the zeroth frequency bin with the other
individual bins, in order to accurately compare the signals.

Figure 4 displays the some-what trivial result for a signal
with a single frequency, where the most significant frequency
(MSF) calculation is comparing individual frequencies. When
there is only one dominating frequency, the MSF will be exactly
the input frequency, since all other frequencies will have zero
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Fig. 4. "Proof-of-concept" with an isolated signal in the xy-plane, with wavenumber kx = 0.58 Mm−1, and no frequency. The 1st panel shows a 1D
slice in the y-axis, taken at an arbitrary time. The middle panel shows the amplitude spectrum from the DFT, averaged across the y and time axes,
where there is a sharp peak at the 0.58 Mm−1, whilst the third panel shows the most significant signal per pixel in the domain. In grey, the most
significant frequency, ω is shown, and is zero as expected.

0 2 4 6 8 10 12

X (Mm)

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

g
(x

)

0 2 4 6 8 10 12

X (Mm)

0.00
0.08
0.17
0.25
0.33
0.42
0.50
0.58
0.67
0.75
0.83
0.92
1.00
1.08
1.17
1.25
1.33
1.42
1.50

> 1.50

S
ig

n
ifi

c
a
n
t
k
x
,

(M
m
−

1
) most sig.

2nd most sig.

0 2 4 6 8 10 12

X (Mm)

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

S
ig

n
ifi

c
a
n
t

o
u
tp

u
t

Signal: g(x) = cos(2π × 0.166× xdx) + 1
2

cos(2π × 0.751× xdx)

Fig. 5. A composite signal of two frequencies, kx = 0.166 Mm−1 and kx = 0.751 Mm−1. The first panel shows the original signal, the second panel
shows the results of the most and second most significant calculations, and the final panel shows the final output of the significant frequencies. The
original frequency is shown by the dotted lines for reference.

amplitudes. When two or more waves travel through a domain, it
is important to repeat the MSF calculation to capture the second-
most significant frequency (SSF), as seen in Figure 5. Here, the
signal is comprised of two frequencies, the main wave has a
large amplitude and low frequency whilst a smaller-amplitude
higher-frequency wave runs across it, creating a more complex
signal. The MSF calculation predominantly captures the low
frequency wave. To repeat this process for the SSFs, we remove
the signal produced by the composite MSFs from the original
signal, leaving the point-wise residual, DiffMS F . The MSF algo-
rithm may then be applied to the residual, resulting in the SSF.
We can see from the 3rd panel of Figure 5, that the output of the
MSF and SSF signals combined returns a signal very similar to
the original, except for in a few places around turning points.
At these turning points, the distribution of MSFs is found to
be either the zero frequency (relating to the equilibrium value),
or the frequency bin that contains all frequencies higher than
1.50 Mm−1, which could relate to numerical noise in the signal.
We note that the spread of frequencies detected in each MSF
calculation may vary dependent on the difference of frequency
and amplitude between the two waves, but in any case, after two
calculations, we find that the two dominant frequencies are clear.

This method allows us to go beyond the standard DFT power
spectrum in two ways. Firstly, it can show where a frequency
becomes dominant in a specific region of the simulation domain
where the dynamics are continuously changing. Secondly, it al-
lows us to create inverse ω-frequency outputs in a spatial plane,
and vice-versa, allowing us to locate regions of the domain space
that contain fluctuations at certain frequencies and wavenum-
bers.

3.1. Damping

It is a general characteristic of DFTs that they only decompose a
signal into frequencies with constant amplitudes. Therefore, it is
difficult to capture decaying signals, such as the ones imperative
to energy transfer in the upper solar atmosphere, through damp-
ing and dissipation. In Figure 6, we show how damped signals
can be detected by calculating the MSFs. When the amplitude of
the wave is large, the MSF is confidently set to the correct fre-
quency, but as the amplitude diminishes, the spread of "signifi-
cant" frequencies increases, with the power shifting away from
the actual frequency, and towards the lowest (0 Mm−1) and high-
est (> 1.5 Mm−1) frequencies. This is a distinct characteristic for
a damped wave: therefore we can infer the damping of signals in
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regions where a strong signals dissolves into pixelated high and
low frequencies.
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Fig. 6. Most significant frequencies calculated for a signal with a
damped amplitude.

4. Results

We present a series of results that demonstrate the effectiveness
of this method for capturing localised wave activity in realistic
simulations. We note that future work will explore the physical
mechanisms at play for each case (Cherry, Gudiksen, & Finley,
in prep.), since they require more in-depth analysis that is outside
the scope of this paper.

4.1. Power Spectral Density and pixel plots

Usually, the results of a DFT are displayed as a Power Spectral
Density (PSD), where

PSD(ν̃x, ν̃y, f ) = |F (ν̃x, ν̃y, f )|2 (4)

shows which frequencies contain the most power over the entire
domain. High values of the PSD either correspond to the sum of
many fluctuations covering a large area of the domain, or more
localised fluctuations with large amplitudes in the domain. Fig-
ure 7 concerns the velocity parallel to the magnetic field,

u∥ = u · B, (5)

at z = 4 Mm, and shows the frequency against the horizontal
wavenumber,

ν̃h = (ν̃2x + ν̃
2
y)

1/2. (6)
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Fig. 7. Power Spectral Density plot for u∥ (right), and corresponding
MSF counts (left). Taken for the horizontal plane z = 4 Mm. On the
right plot, the outermost values represent the total counts for all other
frequencies.

The DFT PSD (top panel) is compared to an equivalent plot for
the MSF method (bottom panel). For this, we count the number
of pixels with each combination of MSF and most significant
wavenumber (MSW) for a specific snapshot. In all examples
in this paper unless explicitly stated, we have taken a snapshot
at time t = 1000 seconds of the analysed data and considered
each discrete frequency sampled by the DFT individually
(each frequency bin contains only one frequency, with width
0.525 mHz). In the case of the perpendicular wavenumber, the
bins are created such that each wavenumber bin is centred on
the individual wavenumbers in x, ν̃x, sampled by the DFT. Each
bin therefore contains 2-3 wavenumbers, and has a width of
0.08 Mm−1.

The MSF method captures the most powerful areas of the
PSD in Figure 7, confirming that the method works on the most
important fluctuations in the domain. In the mid-power range,
the MSF method highlights a group of larger wave numbers with
frequency around 4 mHz whose importance is obscured by the
PSD. The right-most column (ν̃h > 2.4 Mm−1), and similarly the
upper-most row ( f > 19.5 mHz) also show strong signals. How-
ever, this is because they contain all the higher frequencies (up
to 50 mHz) and wavenumbers (up to 42.6 Mm−1), respectively,
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Fig. 8. MSF in the velocity parallel to the magnetic field, u∥, for the chromosphere and upper atmosphere.
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Fig. 9. MSF for the vertical magnetic field, Bz, in the chromosphere and upper atmosphere. The rectangles represent the locations shown in later
figures: the dashed rectangle relates to Figure 12, and the solid line represents the slice in Figure 14.

which are not considered individually, and instead the associated
power stacks up in a single bin. The advantage of the MSF cal-
culations is that a pixel plot, such as in Figure 8, may be used to
show the location of the MSFs in the domain, and by extension,
the nature by which the power of the PSD is created. Figure 8
highlights the areas where fluctuations of a specific frequency
begin to dominate in the domain, either locally or globally. For
example, we see an overwhelming development of MSFs in the
range 3-6 mHz as height increases. By z = 4 Mm, there are
expansive and continuous patches where these frequencies dom-
inate, covering 45% of the domain. This compliments the results
from the PSD in Figure 7 that the most power is centred on these
frequencies. By z = 6 Mm, the coverage has reached 50%, whilst
in the photosphere (not shown) it is only ∼ 25%. The same ac-
tivity is not observed in the magnetic field in Figure 9, and so it
is likely these fluctuations relate to longitudinal pressure modes.
Although outside the scope of this paper, we note that since we
now have location information, it would be possible to estimate
the wave flux energy more accurately, by only integrating over
the regions covered by the specific frequencies, instead of just
taking an average over the whole domain. Thus the wave-energy

for longitudinal waves would be calculated by,

Flong =
1
2

"
S
ρv2pcs dS, (7)

where vp is the velocity in the direction of propagation, and S is
the area covered by the specific frequencies. Since the direction
of propagation is unknown, an upper limit could be estimated
with the magnitude of the velocity vector, |v|.

4.2. Matched frequencies

We can speculate on the nature of other fluctuations using the
correlations between MSFs in the magnetic field, parallel and
perpendicular velocity, and pressure. We use the example of
magnetoacoustic modes in the upper atmosphere. Magnetoa-
coustic modes have both pressure and magnetic variations,
as well as transverse and longitudinal oscillations. For the
longitudinal component, we examine the parallel velocity and
pressure together. The top panel of Figure 10 counts the number
of pixels where the MSF is the same for both quantities, ± one
frequency step (0.53 mHz). The strongest correlations between
the two variables always lie within the 3 − 6 mHz range,
supporting the idea that the dominating coverage in Figure 8 is
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Fig. 10. Number of matched MSFs between pressure & parallel velocity
(upper), and magnetic field & perpendicular velocity (lower), at z =
4 Mm. The frequencies are considered matched if they are within ± ∼
0.53 mHz (1 frequency step) of each other.

due to pressure modes. There is also a clear correlation in this
frequency range for the transverse oscillations, represented by
the magnitude of the magnetic field and perpendicular velocity,
v⊥ (lower panels of Figure 10). From Figures 8 and 9, however,
we already know that the locations of fluctuations with these
frequencies in the magnetic field and parallel velocity in general
do not match in location, and this is confirmed in Figure 11. It is
an interesting feature that we nevertheless see a similar number
of pixels showing transverse oscillations as longitudinal in this
region if they do not lie in similar locations.

Using the correlated pixel plots in Figure 11, we can dis-
tinguish areas where the magnetic and acoustic MSFs do over-
lap. Matching the results of all four variables is an ambitious
task, and we would expect that the less dominant oscillations
(of fast- and slow-magnetoacoustic modes) would more likely
be captured in the secondary, or even tertiary iterations of the
MSF calculations. Considering this, it is not unexpected that
there are only a few overlapping regions to be found in Figure
11. Nevertheless, there is a notable coupling between both lon-
gitudinal and transverse components on the boundaries of both
swirls, suggesting the presence of magnetoacoustic wave modes
in these areas. We note that these regions do not have weak mag-
nitudes in either velocities or pressure relative to the average of
the domain, as shown for parallel velocity in the right-most panel
of Figure 11). Therefore, these results are unlikely to be affected
by noise or other artefacts from the method. On the other hand,
the magnitude of the magnetic field can be low in these areas.
Even so, the matching of three strong-valued variables inspires
further analysis.

4.3. Small-scale processes

In contrast to the MSFs of the parallel velocity, the vertical
magnetic field, shown in Figure 9, shows global fluctuations
at the lowest frequencies in the upper atmosphere. We see
concentrations of fluctuations with a broad range of frequencies

localised along the magnetic field boundaries in the domain. In
fact, for the 3 − 6 mHz frequencies in Bz, the coverage steadily
decreases from ∼ 30% at zz = 2 Mm, to ∼ 20% by z = 6 Mm,
with strong concentrations around the edges of both swirls at
z = 4 Mm. The behaviour of these concentrations are readily
identified using the MSF method as it separates structure in the
spatial and frequency domains.

Furthermore, lines of "speckled" high-frequency MSFs are
present in both the parallel velocity and vertical magnetic field,
seen in the orange-yellow range in Figure 9. These networks
of higher-frequencies are observed in many of the variables,
but most structured in the vertical magnetic field, Bz, along the
edges of the swirls. In these regions, the MSF changes over
very short distances (∼ per pixel) in the spatial domain, creating
the "speckled" pattern. It is unlikely that this is a physical phe-
nomenon, and instead a "short-coming" of the method, which
we can exploit to detect other phenomena. There are a number
of reasons these patterns could arise. Firstly, in regions where
the original signal is close to zero relative to the average of the
domain, it is important to acknowledge the presence of noise in
the simulation. The noise is most likely to be captured by the top
"highest frequencies" bin (i.e., displayed in yellow), although it
is also possible in the high individual frequency bins. However,
around the edge of the swirls, for example, the magnetic field
is only near zero in very small regions where the polarity
changes, and the velocities remain strong, so the presence of
these speckled regions is likely to be the result of a different
phenomenon. Instead, we refer to the behaviour discussed in
Section 3. Aside from noise, these regions could either indicate
a smaller, secondary fluctuation with different frequency, as
described in Figure 5, where the MSF method sometimes also
captures the SSF, with some loss of precision, or it indicates the
dissipation of a wave, as in Figure 6. There is a slight difference
to the idealised example of the latter used in Section 3: in this
case we are taking the temporal frequency, f , and relating it to
spatial location, and so we rely on the assumption that the MSFs
will show damping across the orthogonal direction in a similar
fashion to how they react in the direction parallel to the given
frequency.

In the case of the thicker areas of "speckled" MSFs for Bz
on the boundary of the large swirl, at z = 4 Mm, the SSFs (not
shown) provide no evidence of a secondary fluctuation in these
regions. Further analysis favours the dissipation theory: the
Bz signal appears to be damped in a quasi-oscillatory motion
from the centre of the swirl, at ∼ (8 Mm,5 Mm), to the outside
boundary located vertically downwards at Y ≈ 2 Mm. This is
displayed in the top-right panel of Figure 12 as a 1D vertical
slice through the lower part of the swirl. The bottom right panel
shows that this observed oscillation coincides with chaotic
switching of MSFs, in a similar fashion to the distinct pattern
for damping described in Section 3. In this region we also see
several peaks in the viscous heating term, Qvisc, which measures
the transfer of energy from kinetic to heat in the plasma through
viscous forces. There is an increased spatial-average across
the slice compared to other areas in the domain, as seen in the
lower-left panel. In the region of the observed dissipation, the
peaks align exactly with each dip in the Bz oscillation, suggest-
ing energy is transferred from the wave into heat in this region.
In contrast, other regions close to the swirl boundary display
a thinner region of much stronger viscous heating, coinciding
with the thin "speckled" regions. In these regions, we do not see
oscillations, but only a sharp decrease in the magnitude of Bz
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to near zero. This observation, coupled with the strong viscous
heating suggests that the damping rate here is much greater than
the frequency of the wave, such that no oscillations are observed.

The above example demonstrates the kind of further analysis
that is needed in order to distinguish the nature of any "speckled"
region observed. It is quite likely that there are more instances
of damping to be found in this simulation. Similarly, it would be
possible to track these damping mechanisms through the atmo-
sphere. If the above speculations are validated through further
analysis, this could provide an invaluable tool for measuring the
contribution to coronal heating from the dissipation of waves.

5. Discussion

5.1. Viscous heating in swirl boundaries

Despite this paper primarily serving as an introduction to the
MSF method, the results from Sections 4.2 and 4.3 can be used
to understand how energy is transported via wave modes and
deposited in the low corona. In the swirl boundaries, the plasma-
β remains greater than 1, as seen in Figure 3. Therefore the
plasma displays characteristics of chromospheric plasma, but is
pulled up to coronal heights by the motions within the swirls.
Although greater than 1, the plasma-β remains close to unity,
providing ideal conditions in the plasma for mode conversion,
via phase-mixing or otherwise. This allows waves with both
strong magnetic and acoustic characteristics to exist. As the os-
cillations diffuse outwards from the swirl boundaries, the plasma
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approaches low-β once more, and so the conditions for magne-
tosonic waves to propagate change, causing damping of the wave
amplitude from external forces such as viscosity. The excess en-
ergy is transferred into heat, and found in the viscous heating
term, Qvisc, that ultimately raises the temperature of the plasma.
This conclusion requires further analysis to validate, namely by
following plasma along the spiral boundary and "tracking" spe-
cific waves. This method should provide the tools to do this in
future (Cherry et al. in prep).

5.2. Contributions of the MSFs

Figure 13 shows the contribution,

C = (1 − DiffMSF) × 100%, (8)

of the MSF signal to the original signal, where DiffMSF is the
difference between the two signals, calculated in the same way
as in Equation 3, but including the sign of the difference. We
do not expect one signal to account for the entire strength of
the original signal, due to the extent at which neighbouring
processes are continuously interacting. In theory, both a con-
tribution greater than 100% and a negative contribution are
possible, since the MSF signal may overestimate the original
signal, or be counteracting the effect an overestimated signal
through destructive interference (with opposite sign to the origi-
nal signal). In our results, there are no negative contributions.
This is because in most cases, the overestimated signal will
be closer to the original than the counteracting signal. The
likelihood the method provides an accurate result is lower for
areas where the contribution is further from 100 % (i.e., close
to 0% or 200%). Nevertheless, Figure 13 shows there are only a
few areas where this is the case (shown by the black patches),
and that these areas do not coincide with the locations of the
results addressed in this study.

For structures where the original signal at a specific time is
much larger than the average deviation, such as in the strong ve-
locities and magnetic field of the swirls (that move in space and
time), the MSF method can accurately depict the spatial and time
scales, but not necessarily the correct contribution of the MSF or
MSW signal to the original. Figure 14 is an example of this for
the large swirl. This is because the MSF relies on the constant
amplitudes taken from the DFT, which will be an average of the
fluctuations in the domain for any given wavenumber. Therefore
it is not the purpose of the MSF method to detect accurately the
contribution of large, time-evolving structures in a global do-
main. If this is required, one could apply the DFT to a smaller
region around the structure in question.

5.3. Future applications

In this paper, we have established an algorithm for detecting
localised wave activity based on the results of DFTs. This
method provides a new way to probe wave activity in the
simulation domain, and has already produced results that show
potential for improving our understanding of heating in the
solar atmosphere. It surpasses the global results given by a
DFTs power spectrum, by providing information on dominant
frequencies in localised areas. This gives us valuable insight
into the small-scale activity surrounding areas of interest such
as swirl boundaries and the β = 1 transition. Furthermore,
the behaviour of the MSFs for damped oscillations may be
exploited for detection of damping mechanisms, which is not
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Fig. 13. The contribution of the MSF signal to the original signal of
parallel velocity (upper) and magnetic field (lower). The insets provide
examples of the small patches of negligible contributions by the MSF
signal.

possible in the DFT alone. The algorithm is an alternative to
the Wavelet method (Jess et al. 2023) which does not require as
many assumptions about the wave modes. It gives more precise
results of frequency and location than decomposition methods
such as Empirical Mode Decomposition (Huang et al. 1998) and
Single value decomposition (Santolík et al. 2003).

We have focused our attention on the MSFs and MSWs in
the horizontal spatial domain. In the upper atmosphere, the ma-
jority of oscillations propagate vertically upwards, driven by the
convective motions below, and more analysis in the vertical di-
rection is an important addition to future work. This could help
to refine the results found on the boundaries of the swirl. A 3D
MSF analysis could be used to find the direction of propagation
in the boundary regions, and track fluctuation origin, propaga-
tion, and dissipation in time and as a function of height. The
results from which could be compared to those of traditional
wave guides, such as described by Enerhaug et al. (2024). A
similar application would be detailing the wave activity along
coronal loops in a 3D simulation. This could extend the work of,
for example, (Riedl et al. 2021b) by including external physics
in the plasma around the loop. Advanced 3+-dimensional cal-
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culations require significant memory and computational power
due to the highly-resolved spatio-temporal coverage in this sim-
ulation. By adapting the DFTs or domain-space used, we could
reduce this requirement, which could also improve the method
in areas of large structures, as discussed above. Further analy-
sis of the MSFs and their distribution in the domain will give us
valuable insights into the origin and heating of the solar wind.
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